Step |
Hyp |
Ref |
Expression |
1 |
|
ssmapsn.f |
|- F/_ f D |
2 |
|
ssmapsn.a |
|- ( ph -> A e. V ) |
3 |
|
ssmapsn.c |
|- ( ph -> C C_ ( B ^m { A } ) ) |
4 |
|
ssmapsn.d |
|- D = U_ f e. C ran f |
5 |
3
|
sselda |
|- ( ( ph /\ f e. C ) -> f e. ( B ^m { A } ) ) |
6 |
|
elmapi |
|- ( f e. ( B ^m { A } ) -> f : { A } --> B ) |
7 |
5 6
|
syl |
|- ( ( ph /\ f e. C ) -> f : { A } --> B ) |
8 |
7
|
ffnd |
|- ( ( ph /\ f e. C ) -> f Fn { A } ) |
9 |
4
|
a1i |
|- ( ph -> D = U_ f e. C ran f ) |
10 |
|
ovexd |
|- ( ph -> ( B ^m { A } ) e. _V ) |
11 |
10 3
|
ssexd |
|- ( ph -> C e. _V ) |
12 |
|
rnexg |
|- ( f e. C -> ran f e. _V ) |
13 |
12
|
rgen |
|- A. f e. C ran f e. _V |
14 |
13
|
a1i |
|- ( ph -> A. f e. C ran f e. _V ) |
15 |
11 14
|
jca |
|- ( ph -> ( C e. _V /\ A. f e. C ran f e. _V ) ) |
16 |
|
iunexg |
|- ( ( C e. _V /\ A. f e. C ran f e. _V ) -> U_ f e. C ran f e. _V ) |
17 |
15 16
|
syl |
|- ( ph -> U_ f e. C ran f e. _V ) |
18 |
9 17
|
eqeltrd |
|- ( ph -> D e. _V ) |
19 |
18
|
adantr |
|- ( ( ph /\ f e. C ) -> D e. _V ) |
20 |
|
ssiun2 |
|- ( f e. C -> ran f C_ U_ f e. C ran f ) |
21 |
20
|
adantl |
|- ( ( ph /\ f e. C ) -> ran f C_ U_ f e. C ran f ) |
22 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
23 |
2 22
|
syl |
|- ( ph -> A e. { A } ) |
24 |
23
|
adantr |
|- ( ( ph /\ f e. C ) -> A e. { A } ) |
25 |
|
fnfvelrn |
|- ( ( f Fn { A } /\ A e. { A } ) -> ( f ` A ) e. ran f ) |
26 |
8 24 25
|
syl2anc |
|- ( ( ph /\ f e. C ) -> ( f ` A ) e. ran f ) |
27 |
21 26
|
sseldd |
|- ( ( ph /\ f e. C ) -> ( f ` A ) e. U_ f e. C ran f ) |
28 |
27 4
|
eleqtrrdi |
|- ( ( ph /\ f e. C ) -> ( f ` A ) e. D ) |
29 |
8 19 28
|
elmapsnd |
|- ( ( ph /\ f e. C ) -> f e. ( D ^m { A } ) ) |
30 |
29
|
ex |
|- ( ph -> ( f e. C -> f e. ( D ^m { A } ) ) ) |
31 |
18
|
adantr |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> D e. _V ) |
32 |
|
snex |
|- { A } e. _V |
33 |
32
|
a1i |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> { A } e. _V ) |
34 |
|
simpr |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> f e. ( D ^m { A } ) ) |
35 |
23
|
adantr |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> A e. { A } ) |
36 |
31 33 34 35
|
fvmap |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> ( f ` A ) e. D ) |
37 |
4
|
idi |
|- D = U_ f e. C ran f |
38 |
|
rneq |
|- ( f = g -> ran f = ran g ) |
39 |
38
|
cbviunv |
|- U_ f e. C ran f = U_ g e. C ran g |
40 |
37 39
|
eqtri |
|- D = U_ g e. C ran g |
41 |
36 40
|
eleqtrdi |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> ( f ` A ) e. U_ g e. C ran g ) |
42 |
|
eliun |
|- ( ( f ` A ) e. U_ g e. C ran g <-> E. g e. C ( f ` A ) e. ran g ) |
43 |
41 42
|
sylib |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> E. g e. C ( f ` A ) e. ran g ) |
44 |
|
simp3 |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> ( f ` A ) e. ran g ) |
45 |
|
simp1l |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> ph ) |
46 |
45 2
|
syl |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> A e. V ) |
47 |
|
eqid |
|- { A } = { A } |
48 |
|
simp1r |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> f e. ( D ^m { A } ) ) |
49 |
|
elmapfn |
|- ( f e. ( D ^m { A } ) -> f Fn { A } ) |
50 |
48 49
|
syl |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> f Fn { A } ) |
51 |
3
|
sselda |
|- ( ( ph /\ g e. C ) -> g e. ( B ^m { A } ) ) |
52 |
|
elmapfn |
|- ( g e. ( B ^m { A } ) -> g Fn { A } ) |
53 |
51 52
|
syl |
|- ( ( ph /\ g e. C ) -> g Fn { A } ) |
54 |
53
|
3adant3 |
|- ( ( ph /\ g e. C /\ ( f ` A ) e. ran g ) -> g Fn { A } ) |
55 |
54
|
3adant1r |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> g Fn { A } ) |
56 |
46 47 50 55
|
fsneqrn |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> ( f = g <-> ( f ` A ) e. ran g ) ) |
57 |
44 56
|
mpbird |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> f = g ) |
58 |
|
simp2 |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> g e. C ) |
59 |
57 58
|
eqeltrd |
|- ( ( ( ph /\ f e. ( D ^m { A } ) ) /\ g e. C /\ ( f ` A ) e. ran g ) -> f e. C ) |
60 |
59
|
3exp |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> ( g e. C -> ( ( f ` A ) e. ran g -> f e. C ) ) ) |
61 |
60
|
rexlimdv |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> ( E. g e. C ( f ` A ) e. ran g -> f e. C ) ) |
62 |
43 61
|
mpd |
|- ( ( ph /\ f e. ( D ^m { A } ) ) -> f e. C ) |
63 |
62
|
ex |
|- ( ph -> ( f e. ( D ^m { A } ) -> f e. C ) ) |
64 |
30 63
|
impbid |
|- ( ph -> ( f e. C <-> f e. ( D ^m { A } ) ) ) |
65 |
64
|
alrimiv |
|- ( ph -> A. f ( f e. C <-> f e. ( D ^m { A } ) ) ) |
66 |
|
nfcv |
|- F/_ f C |
67 |
|
nfcv |
|- F/_ f ^m |
68 |
|
nfcv |
|- F/_ f { A } |
69 |
1 67 68
|
nfov |
|- F/_ f ( D ^m { A } ) |
70 |
66 69
|
cleqf |
|- ( C = ( D ^m { A } ) <-> A. f ( f e. C <-> f e. ( D ^m { A } ) ) ) |
71 |
65 70
|
sylibr |
|- ( ph -> C = ( D ^m { A } ) ) |