Step |
Hyp |
Ref |
Expression |
1 |
|
inss1 |
|- ( ( x vH A ) i^i B ) C_ ( x vH A ) |
2 |
|
dfss |
|- ( A C_ B <-> A = ( A i^i B ) ) |
3 |
2
|
biimpi |
|- ( A C_ B -> A = ( A i^i B ) ) |
4 |
3
|
oveq2d |
|- ( A C_ B -> ( x vH A ) = ( x vH ( A i^i B ) ) ) |
5 |
1 4
|
sseqtrid |
|- ( A C_ B -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) |
6 |
5
|
a1d |
|- ( A C_ B -> ( x C_ B -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) |
7 |
6
|
ralrimivw |
|- ( A C_ B -> A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) |
8 |
|
mdbr2 |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH B <-> A. x e. CH ( x C_ B -> ( ( x vH A ) i^i B ) C_ ( x vH ( A i^i B ) ) ) ) ) |
9 |
7 8
|
syl5ibr |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_ B -> A MH B ) ) |
10 |
9
|
3impia |
|- ( ( A e. CH /\ B e. CH /\ A C_ B ) -> A MH B ) |