Step |
Hyp |
Ref |
Expression |
1 |
|
inss2 |
|- ( ( x vH B ) i^i A ) C_ A |
2 |
|
chub2 |
|- ( ( A e. CH /\ x e. CH ) -> A C_ ( x vH A ) ) |
3 |
1 2
|
sstrid |
|- ( ( A e. CH /\ x e. CH ) -> ( ( x vH B ) i^i A ) C_ ( x vH A ) ) |
4 |
3
|
adantrl |
|- ( ( A e. CH /\ ( A C_ B /\ x e. CH ) ) -> ( ( x vH B ) i^i A ) C_ ( x vH A ) ) |
5 |
|
simpl |
|- ( ( A C_ B /\ x e. CH ) -> A C_ B ) |
6 |
|
sseqin2 |
|- ( A C_ B <-> ( B i^i A ) = A ) |
7 |
5 6
|
sylib |
|- ( ( A C_ B /\ x e. CH ) -> ( B i^i A ) = A ) |
8 |
7
|
adantl |
|- ( ( A e. CH /\ ( A C_ B /\ x e. CH ) ) -> ( B i^i A ) = A ) |
9 |
8
|
oveq2d |
|- ( ( A e. CH /\ ( A C_ B /\ x e. CH ) ) -> ( x vH ( B i^i A ) ) = ( x vH A ) ) |
10 |
4 9
|
sseqtrrd |
|- ( ( A e. CH /\ ( A C_ B /\ x e. CH ) ) -> ( ( x vH B ) i^i A ) C_ ( x vH ( B i^i A ) ) ) |
11 |
10
|
a1d |
|- ( ( A e. CH /\ ( A C_ B /\ x e. CH ) ) -> ( x C_ A -> ( ( x vH B ) i^i A ) C_ ( x vH ( B i^i A ) ) ) ) |
12 |
11
|
exp32 |
|- ( A e. CH -> ( A C_ B -> ( x e. CH -> ( x C_ A -> ( ( x vH B ) i^i A ) C_ ( x vH ( B i^i A ) ) ) ) ) ) |
13 |
12
|
ralrimdv |
|- ( A e. CH -> ( A C_ B -> A. x e. CH ( x C_ A -> ( ( x vH B ) i^i A ) C_ ( x vH ( B i^i A ) ) ) ) ) |
14 |
13
|
adantr |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_ B -> A. x e. CH ( x C_ A -> ( ( x vH B ) i^i A ) C_ ( x vH ( B i^i A ) ) ) ) ) |
15 |
|
mdbr2 |
|- ( ( B e. CH /\ A e. CH ) -> ( B MH A <-> A. x e. CH ( x C_ A -> ( ( x vH B ) i^i A ) C_ ( x vH ( B i^i A ) ) ) ) ) |
16 |
15
|
ancoms |
|- ( ( A e. CH /\ B e. CH ) -> ( B MH A <-> A. x e. CH ( x C_ A -> ( ( x vH B ) i^i A ) C_ ( x vH ( B i^i A ) ) ) ) ) |
17 |
14 16
|
sylibrd |
|- ( ( A e. CH /\ B e. CH ) -> ( A C_ B -> B MH A ) ) |
18 |
17
|
3impia |
|- ( ( A e. CH /\ B e. CH /\ A C_ B ) -> B MH A ) |