Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssmin | |- A C_ |^| { x | ( A C_ x /\ ph ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab | |- ( A C_ |^| { x | ( A C_ x /\ ph ) } <-> A. x ( ( A C_ x /\ ph ) -> A C_ x ) ) |
|
| 2 | simpl | |- ( ( A C_ x /\ ph ) -> A C_ x ) |
|
| 3 | 1 2 | mpgbir | |- A C_ |^| { x | ( A C_ x /\ ph ) } |