Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssnct.1 | |- ( ph -> -. A ~<_ _om ) |
|
ssnct.2 | |- ( ph -> A C_ B ) |
||
Assertion | ssnct | |- ( ph -> -. B ~<_ _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssnct.1 | |- ( ph -> -. A ~<_ _om ) |
|
2 | ssnct.2 | |- ( ph -> A C_ B ) |
|
3 | ssct | |- ( ( A C_ B /\ B ~<_ _om ) -> A ~<_ _om ) |
|
4 | 2 3 | sylan | |- ( ( ph /\ B ~<_ _om ) -> A ~<_ _om ) |
5 | 1 | adantr | |- ( ( ph /\ B ~<_ _om ) -> -. A ~<_ _om ) |
6 | 4 5 | pm2.65da | |- ( ph -> -. B ~<_ _om ) |