Metamath Proof Explorer


Theorem ssnct

Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssnct.1
|- ( ph -> -. A ~<_ _om )
ssnct.2
|- ( ph -> A C_ B )
Assertion ssnct
|- ( ph -> -. B ~<_ _om )

Proof

Step Hyp Ref Expression
1 ssnct.1
 |-  ( ph -> -. A ~<_ _om )
2 ssnct.2
 |-  ( ph -> A C_ B )
3 ssct
 |-  ( ( A C_ B /\ B ~<_ _om ) -> A ~<_ _om )
4 2 3 sylan
 |-  ( ( ph /\ B ~<_ _om ) -> A ~<_ _om )
5 1 adantr
 |-  ( ( ph /\ B ~<_ _om ) -> -. A ~<_ _om )
6 4 5 pm2.65da
 |-  ( ph -> -. B ~<_ _om )