Description: If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | ssnel | |- ( ( A C_ B /\ -. C e. B ) -> -. C e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 | |- ( ( A C_ B /\ C e. A ) -> C e. B ) |
|
2 | 1 | stoic1a | |- ( ( A C_ B /\ -. C e. B ) -> -. C e. A ) |