Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssneld.1 | |- ( ph -> A C_ B ) |
|
ssneldd.2 | |- ( ph -> -. C e. B ) |
||
Assertion | ssneldd | |- ( ph -> -. C e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssneld.1 | |- ( ph -> A C_ B ) |
|
2 | ssneldd.2 | |- ( ph -> -. C e. B ) |
|
3 | 1 | ssneld | |- ( ph -> ( -. C e. B -> -. C e. A ) ) |
4 | 2 3 | mpd | |- ( ph -> -. C e. A ) |