Metamath Proof Explorer


Theorem ssneldd

Description: If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ssneld.1
|- ( ph -> A C_ B )
ssneldd.2
|- ( ph -> -. C e. B )
Assertion ssneldd
|- ( ph -> -. C e. A )

Proof

Step Hyp Ref Expression
1 ssneld.1
 |-  ( ph -> A C_ B )
2 ssneldd.2
 |-  ( ph -> -. C e. B )
3 1 ssneld
 |-  ( ph -> ( -. C e. B -> -. C e. A ) )
4 2 3 mpd
 |-  ( ph -> -. C e. A )