Metamath Proof Explorer


Theorem ssnelpssd

Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ssnelpssd.1
|- ( ph -> A C_ B )
ssnelpssd.2
|- ( ph -> C e. B )
ssnelpssd.3
|- ( ph -> -. C e. A )
Assertion ssnelpssd
|- ( ph -> A C. B )

Proof

Step Hyp Ref Expression
1 ssnelpssd.1
 |-  ( ph -> A C_ B )
2 ssnelpssd.2
 |-  ( ph -> C e. B )
3 ssnelpssd.3
 |-  ( ph -> -. C e. A )
4 ssnelpss
 |-  ( A C_ B -> ( ( C e. B /\ -. C e. A ) -> A C. B ) )
5 1 4 syl
 |-  ( ph -> ( ( C e. B /\ -. C e. A ) -> A C. B ) )
6 2 3 5 mp2and
 |-  ( ph -> A C. B )