Step |
Hyp |
Ref |
Expression |
1 |
|
nnfoctb |
|- ( ( A ~<_ _om /\ A =/= (/) ) -> E. g g : NN -onto-> A ) |
2 |
|
fofn |
|- ( g : NN -onto-> A -> g Fn NN ) |
3 |
|
nnex |
|- NN e. _V |
4 |
3
|
a1i |
|- ( g : NN -onto-> A -> NN e. _V ) |
5 |
|
ltwenn |
|- < We NN |
6 |
5
|
a1i |
|- ( g : NN -onto-> A -> < We NN ) |
7 |
2 4 6
|
wessf1orn |
|- ( g : NN -onto-> A -> E. x e. ~P NN ( g |` x ) : x -1-1-onto-> ran g ) |
8 |
|
f1odm |
|- ( ( g |` x ) : x -1-1-onto-> ran g -> dom ( g |` x ) = x ) |
9 |
8
|
adantl |
|- ( ( x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> dom ( g |` x ) = x ) |
10 |
|
elpwi |
|- ( x e. ~P NN -> x C_ NN ) |
11 |
10
|
adantr |
|- ( ( x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> x C_ NN ) |
12 |
9 11
|
eqsstrd |
|- ( ( x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> dom ( g |` x ) C_ NN ) |
13 |
12
|
3adant1 |
|- ( ( g : NN -onto-> A /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> dom ( g |` x ) C_ NN ) |
14 |
|
simpr |
|- ( ( g : NN -onto-> A /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : x -1-1-onto-> ran g ) |
15 |
|
eqidd |
|- ( ( g : NN -onto-> A /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) = ( g |` x ) ) |
16 |
8
|
eqcomd |
|- ( ( g |` x ) : x -1-1-onto-> ran g -> x = dom ( g |` x ) ) |
17 |
16
|
adantl |
|- ( ( g : NN -onto-> A /\ ( g |` x ) : x -1-1-onto-> ran g ) -> x = dom ( g |` x ) ) |
18 |
|
forn |
|- ( g : NN -onto-> A -> ran g = A ) |
19 |
18
|
adantr |
|- ( ( g : NN -onto-> A /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ran g = A ) |
20 |
15 17 19
|
f1oeq123d |
|- ( ( g : NN -onto-> A /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( ( g |` x ) : x -1-1-onto-> ran g <-> ( g |` x ) : dom ( g |` x ) -1-1-onto-> A ) ) |
21 |
14 20
|
mpbid |
|- ( ( g : NN -onto-> A /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : dom ( g |` x ) -1-1-onto-> A ) |
22 |
21
|
3adant2 |
|- ( ( g : NN -onto-> A /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> ( g |` x ) : dom ( g |` x ) -1-1-onto-> A ) |
23 |
|
vex |
|- g e. _V |
24 |
23
|
resex |
|- ( g |` x ) e. _V |
25 |
|
dmeq |
|- ( f = ( g |` x ) -> dom f = dom ( g |` x ) ) |
26 |
25
|
sseq1d |
|- ( f = ( g |` x ) -> ( dom f C_ NN <-> dom ( g |` x ) C_ NN ) ) |
27 |
|
id |
|- ( f = ( g |` x ) -> f = ( g |` x ) ) |
28 |
|
eqidd |
|- ( f = ( g |` x ) -> A = A ) |
29 |
27 25 28
|
f1oeq123d |
|- ( f = ( g |` x ) -> ( f : dom f -1-1-onto-> A <-> ( g |` x ) : dom ( g |` x ) -1-1-onto-> A ) ) |
30 |
26 29
|
anbi12d |
|- ( f = ( g |` x ) -> ( ( dom f C_ NN /\ f : dom f -1-1-onto-> A ) <-> ( dom ( g |` x ) C_ NN /\ ( g |` x ) : dom ( g |` x ) -1-1-onto-> A ) ) ) |
31 |
24 30
|
spcev |
|- ( ( dom ( g |` x ) C_ NN /\ ( g |` x ) : dom ( g |` x ) -1-1-onto-> A ) -> E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> A ) ) |
32 |
13 22 31
|
syl2anc |
|- ( ( g : NN -onto-> A /\ x e. ~P NN /\ ( g |` x ) : x -1-1-onto-> ran g ) -> E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> A ) ) |
33 |
32
|
3exp |
|- ( g : NN -onto-> A -> ( x e. ~P NN -> ( ( g |` x ) : x -1-1-onto-> ran g -> E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> A ) ) ) ) |
34 |
33
|
rexlimdv |
|- ( g : NN -onto-> A -> ( E. x e. ~P NN ( g |` x ) : x -1-1-onto-> ran g -> E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> A ) ) ) |
35 |
7 34
|
mpd |
|- ( g : NN -onto-> A -> E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> A ) ) |
36 |
35
|
a1i |
|- ( ( A ~<_ _om /\ A =/= (/) ) -> ( g : NN -onto-> A -> E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> A ) ) ) |
37 |
36
|
exlimdv |
|- ( ( A ~<_ _om /\ A =/= (/) ) -> ( E. g g : NN -onto-> A -> E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> A ) ) ) |
38 |
1 37
|
mpd |
|- ( ( A ~<_ _om /\ A =/= (/) ) -> E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> A ) ) |