Step |
Hyp |
Ref |
Expression |
1 |
|
sspss |
|- ( B C_ A <-> ( B C. A \/ B = A ) ) |
2 |
|
pssnn |
|- ( ( A e. _om /\ B C. A ) -> E. x e. A B ~~ x ) |
3 |
|
elnn |
|- ( ( x e. A /\ A e. _om ) -> x e. _om ) |
4 |
3
|
expcom |
|- ( A e. _om -> ( x e. A -> x e. _om ) ) |
5 |
4
|
anim1d |
|- ( A e. _om -> ( ( x e. A /\ B ~~ x ) -> ( x e. _om /\ B ~~ x ) ) ) |
6 |
5
|
reximdv2 |
|- ( A e. _om -> ( E. x e. A B ~~ x -> E. x e. _om B ~~ x ) ) |
7 |
6
|
adantr |
|- ( ( A e. _om /\ B C. A ) -> ( E. x e. A B ~~ x -> E. x e. _om B ~~ x ) ) |
8 |
2 7
|
mpd |
|- ( ( A e. _om /\ B C. A ) -> E. x e. _om B ~~ x ) |
9 |
|
isfi |
|- ( B e. Fin <-> E. x e. _om B ~~ x ) |
10 |
8 9
|
sylibr |
|- ( ( A e. _om /\ B C. A ) -> B e. Fin ) |
11 |
|
eleq1 |
|- ( B = A -> ( B e. _om <-> A e. _om ) ) |
12 |
11
|
biimparc |
|- ( ( A e. _om /\ B = A ) -> B e. _om ) |
13 |
|
nnfi |
|- ( B e. _om -> B e. Fin ) |
14 |
12 13
|
syl |
|- ( ( A e. _om /\ B = A ) -> B e. Fin ) |
15 |
10 14
|
jaodan |
|- ( ( A e. _om /\ ( B C. A \/ B = A ) ) -> B e. Fin ) |
16 |
1 15
|
sylan2b |
|- ( ( A e. _om /\ B C_ A ) -> B e. Fin ) |