Metamath Proof Explorer


Theorem ssntr

Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion ssntr
|- ( ( ( J e. Top /\ S C_ X ) /\ ( O e. J /\ O C_ S ) ) -> O C_ ( ( int ` J ) ` S ) )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 elin
 |-  ( O e. ( J i^i ~P S ) <-> ( O e. J /\ O e. ~P S ) )
3 elpwg
 |-  ( O e. J -> ( O e. ~P S <-> O C_ S ) )
4 3 pm5.32i
 |-  ( ( O e. J /\ O e. ~P S ) <-> ( O e. J /\ O C_ S ) )
5 2 4 bitr2i
 |-  ( ( O e. J /\ O C_ S ) <-> O e. ( J i^i ~P S ) )
6 elssuni
 |-  ( O e. ( J i^i ~P S ) -> O C_ U. ( J i^i ~P S ) )
7 5 6 sylbi
 |-  ( ( O e. J /\ O C_ S ) -> O C_ U. ( J i^i ~P S ) )
8 7 adantl
 |-  ( ( ( J e. Top /\ S C_ X ) /\ ( O e. J /\ O C_ S ) ) -> O C_ U. ( J i^i ~P S ) )
9 1 ntrval
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = U. ( J i^i ~P S ) )
10 9 adantr
 |-  ( ( ( J e. Top /\ S C_ X ) /\ ( O e. J /\ O C_ S ) ) -> ( ( int ` J ) ` S ) = U. ( J i^i ~P S ) )
11 8 10 sseqtrrd
 |-  ( ( ( J e. Top /\ S C_ X ) /\ ( O e. J /\ O C_ S ) ) -> O C_ ( ( int ` J ) ` S ) )