Metamath Proof Explorer


Theorem ssnum

Description: A subset of a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion ssnum
|- ( ( A e. dom card /\ B C_ A ) -> B e. dom card )

Proof

Step Hyp Ref Expression
1 ssdomg
 |-  ( A e. dom card -> ( B C_ A -> B ~<_ A ) )
2 1 imp
 |-  ( ( A e. dom card /\ B C_ A ) -> B ~<_ A )
3 numdom
 |-  ( ( A e. dom card /\ B ~<_ A ) -> B e. dom card )
4 2 3 syldan
 |-  ( ( A e. dom card /\ B C_ A ) -> B e. dom card )