Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of Suppes p. 132. (Contributed by NM, 1-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | ssonuni | |- ( A e. V -> ( A C_ On -> U. A e. On ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssorduni | |- ( A C_ On -> Ord U. A ) |
|
2 | uniexg | |- ( A e. V -> U. A e. _V ) |
|
3 | elong | |- ( U. A e. _V -> ( U. A e. On <-> Ord U. A ) ) |
|
4 | 2 3 | syl | |- ( A e. V -> ( U. A e. On <-> Ord U. A ) ) |
5 | 1 4 | syl5ibr | |- ( A e. V -> ( A C_ On -> U. A e. On ) ) |