Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of Suppes p. 132. Lemma 2.7 of Schloeder p. 4. (Contributed by NM, 1-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssonuni | |- ( A e. V -> ( A C_ On -> U. A e. On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssorduni | |- ( A C_ On -> Ord U. A ) |
|
| 2 | uniexg | |- ( A e. V -> U. A e. _V ) |
|
| 3 | elong | |- ( U. A e. _V -> ( U. A e. On <-> Ord U. A ) ) |
|
| 4 | 2 3 | syl | |- ( A e. V -> ( U. A e. On <-> Ord U. A ) ) |
| 5 | 1 4 | imbitrrid | |- ( A e. V -> ( A C_ On -> U. A e. On ) ) |