Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014) (Revised by Mario Carneiro, 24-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssopab2dv.1 | |- ( ph -> ( ps -> ch ) ) |
|
Assertion | ssopab2dv | |- ( ph -> { <. x , y >. | ps } C_ { <. x , y >. | ch } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2dv.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | 1 | alrimivv | |- ( ph -> A. x A. y ( ps -> ch ) ) |
3 | ssopab2 | |- ( A. x A. y ( ps -> ch ) -> { <. x , y >. | ps } C_ { <. x , y >. | ch } ) |
|
4 | 2 3 | syl | |- ( ph -> { <. x , y >. | ps } C_ { <. x , y >. | ch } ) |