Metamath Proof Explorer


Theorem ssopab2dv

Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypothesis ssopab2dv.1
|- ( ph -> ( ps -> ch ) )
Assertion ssopab2dv
|- ( ph -> { <. x , y >. | ps } C_ { <. x , y >. | ch } )

Proof

Step Hyp Ref Expression
1 ssopab2dv.1
 |-  ( ph -> ( ps -> ch ) )
2 1 alrimivv
 |-  ( ph -> A. x A. y ( ps -> ch ) )
3 ssopab2
 |-  ( A. x A. y ( ps -> ch ) -> { <. x , y >. | ps } C_ { <. x , y >. | ch } )
4 2 3 syl
 |-  ( ph -> { <. x , y >. | ps } C_ { <. x , y >. | ch } )