Step |
Hyp |
Ref |
Expression |
1 |
|
sspba.x |
|- X = ( BaseSet ` U ) |
2 |
|
sspba.y |
|- Y = ( BaseSet ` W ) |
3 |
|
sspba.h |
|- H = ( SubSp ` U ) |
4 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
5 |
|
eqid |
|- ( +v ` W ) = ( +v ` W ) |
6 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
7 |
|
eqid |
|- ( .sOLD ` W ) = ( .sOLD ` W ) |
8 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
9 |
|
eqid |
|- ( normCV ` W ) = ( normCV ` W ) |
10 |
4 5 6 7 8 9 3
|
isssp |
|- ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) ) ) |
11 |
10
|
simplbda |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) |
12 |
11
|
simp1d |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( +v ` W ) C_ ( +v ` U ) ) |
13 |
|
rnss |
|- ( ( +v ` W ) C_ ( +v ` U ) -> ran ( +v ` W ) C_ ran ( +v ` U ) ) |
14 |
12 13
|
syl |
|- ( ( U e. NrmCVec /\ W e. H ) -> ran ( +v ` W ) C_ ran ( +v ` U ) ) |
15 |
2 5
|
bafval |
|- Y = ran ( +v ` W ) |
16 |
1 4
|
bafval |
|- X = ran ( +v ` U ) |
17 |
14 15 16
|
3sstr4g |
|- ( ( U e. NrmCVec /\ W e. H ) -> Y C_ X ) |