Metamath Proof Explorer


Theorem sspgval

Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspg.y
|- Y = ( BaseSet ` W )
sspg.g
|- G = ( +v ` U )
sspg.f
|- F = ( +v ` W )
sspg.h
|- H = ( SubSp ` U )
Assertion sspgval
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A F B ) = ( A G B ) )

Proof

Step Hyp Ref Expression
1 sspg.y
 |-  Y = ( BaseSet ` W )
2 sspg.g
 |-  G = ( +v ` U )
3 sspg.f
 |-  F = ( +v ` W )
4 sspg.h
 |-  H = ( SubSp ` U )
5 1 2 3 4 sspg
 |-  ( ( U e. NrmCVec /\ W e. H ) -> F = ( G |` ( Y X. Y ) ) )
6 5 oveqd
 |-  ( ( U e. NrmCVec /\ W e. H ) -> ( A F B ) = ( A ( G |` ( Y X. Y ) ) B ) )
7 ovres
 |-  ( ( A e. Y /\ B e. Y ) -> ( A ( G |` ( Y X. Y ) ) B ) = ( A G B ) )
8 6 7 sylan9eq
 |-  ( ( ( U e. NrmCVec /\ W e. H ) /\ ( A e. Y /\ B e. Y ) ) -> ( A F B ) = ( A G B ) )