Step |
Hyp |
Ref |
Expression |
1 |
|
sspid.h |
|- H = ( SubSp ` U ) |
2 |
|
ssid |
|- ( +v ` U ) C_ ( +v ` U ) |
3 |
|
ssid |
|- ( .sOLD ` U ) C_ ( .sOLD ` U ) |
4 |
|
ssid |
|- ( normCV ` U ) C_ ( normCV ` U ) |
5 |
2 3 4
|
3pm3.2i |
|- ( ( +v ` U ) C_ ( +v ` U ) /\ ( .sOLD ` U ) C_ ( .sOLD ` U ) /\ ( normCV ` U ) C_ ( normCV ` U ) ) |
6 |
5
|
jctr |
|- ( U e. NrmCVec -> ( U e. NrmCVec /\ ( ( +v ` U ) C_ ( +v ` U ) /\ ( .sOLD ` U ) C_ ( .sOLD ` U ) /\ ( normCV ` U ) C_ ( normCV ` U ) ) ) ) |
7 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
8 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
9 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
10 |
7 7 8 8 9 9 1
|
isssp |
|- ( U e. NrmCVec -> ( U e. H <-> ( U e. NrmCVec /\ ( ( +v ` U ) C_ ( +v ` U ) /\ ( .sOLD ` U ) C_ ( .sOLD ` U ) /\ ( normCV ` U ) C_ ( normCV ` U ) ) ) ) ) |
11 |
6 10
|
mpbird |
|- ( U e. NrmCVec -> U e. H ) |