| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sspims.y |
|- Y = ( BaseSet ` W ) |
| 2 |
|
sspims.d |
|- D = ( IndMet ` U ) |
| 3 |
|
sspims.c |
|- C = ( IndMet ` W ) |
| 4 |
|
sspims.h |
|- H = ( SubSp ` U ) |
| 5 |
1 2 3 4
|
sspimsval |
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( x e. Y /\ y e. Y ) ) -> ( x C y ) = ( x D y ) ) |
| 6 |
1 3
|
imsdf |
|- ( W e. NrmCVec -> C : ( Y X. Y ) --> RR ) |
| 7 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
| 8 |
7 2
|
imsdf |
|- ( U e. NrmCVec -> D : ( ( BaseSet ` U ) X. ( BaseSet ` U ) ) --> RR ) |
| 9 |
1 4 5 6 8
|
sspmlem |
|- ( ( U e. NrmCVec /\ W e. H ) -> C = ( D |` ( Y X. Y ) ) ) |