Step |
Hyp |
Ref |
Expression |
1 |
|
sspm.y |
|- Y = ( BaseSet ` W ) |
2 |
|
sspm.m |
|- M = ( -v ` U ) |
3 |
|
sspm.l |
|- L = ( -v ` W ) |
4 |
|
sspm.h |
|- H = ( SubSp ` U ) |
5 |
1 2 3 4
|
sspmval |
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( x e. Y /\ y e. Y ) ) -> ( x L y ) = ( x M y ) ) |
6 |
1 3
|
nvmf |
|- ( W e. NrmCVec -> L : ( Y X. Y ) --> Y ) |
7 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
8 |
7 2
|
nvmf |
|- ( U e. NrmCVec -> M : ( ( BaseSet ` U ) X. ( BaseSet ` U ) ) --> ( BaseSet ` U ) ) |
9 |
1 4 5 6 8
|
sspmlem |
|- ( ( U e. NrmCVec /\ W e. H ) -> L = ( M |` ( Y X. Y ) ) ) |