Step |
Hyp |
Ref |
Expression |
1 |
|
sspn.y |
|- Y = ( BaseSet ` W ) |
2 |
|
sspn.n |
|- N = ( normCV ` U ) |
3 |
|
sspn.m |
|- M = ( normCV ` W ) |
4 |
|
sspn.h |
|- H = ( SubSp ` U ) |
5 |
4
|
sspnv |
|- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |
6 |
1 3
|
nvf |
|- ( W e. NrmCVec -> M : Y --> RR ) |
7 |
5 6
|
syl |
|- ( ( U e. NrmCVec /\ W e. H ) -> M : Y --> RR ) |
8 |
7
|
ffnd |
|- ( ( U e. NrmCVec /\ W e. H ) -> M Fn Y ) |
9 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
10 |
9 2
|
nvf |
|- ( U e. NrmCVec -> N : ( BaseSet ` U ) --> RR ) |
11 |
10
|
ffnd |
|- ( U e. NrmCVec -> N Fn ( BaseSet ` U ) ) |
12 |
11
|
adantr |
|- ( ( U e. NrmCVec /\ W e. H ) -> N Fn ( BaseSet ` U ) ) |
13 |
9 1 4
|
sspba |
|- ( ( U e. NrmCVec /\ W e. H ) -> Y C_ ( BaseSet ` U ) ) |
14 |
|
fnssres |
|- ( ( N Fn ( BaseSet ` U ) /\ Y C_ ( BaseSet ` U ) ) -> ( N |` Y ) Fn Y ) |
15 |
12 13 14
|
syl2anc |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( N |` Y ) Fn Y ) |
16 |
10
|
ffund |
|- ( U e. NrmCVec -> Fun N ) |
17 |
16
|
funresd |
|- ( U e. NrmCVec -> Fun ( N |` Y ) ) |
18 |
17
|
ad2antrr |
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ x e. Y ) -> Fun ( N |` Y ) ) |
19 |
|
fnresdm |
|- ( M Fn Y -> ( M |` Y ) = M ) |
20 |
8 19
|
syl |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( M |` Y ) = M ) |
21 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
22 |
|
eqid |
|- ( +v ` W ) = ( +v ` W ) |
23 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
24 |
|
eqid |
|- ( .sOLD ` W ) = ( .sOLD ` W ) |
25 |
21 22 23 24 2 3 4
|
isssp |
|- ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ M C_ N ) ) ) ) |
26 |
25
|
simplbda |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ M C_ N ) ) |
27 |
26
|
simp3d |
|- ( ( U e. NrmCVec /\ W e. H ) -> M C_ N ) |
28 |
|
ssres |
|- ( M C_ N -> ( M |` Y ) C_ ( N |` Y ) ) |
29 |
27 28
|
syl |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( M |` Y ) C_ ( N |` Y ) ) |
30 |
20 29
|
eqsstrrd |
|- ( ( U e. NrmCVec /\ W e. H ) -> M C_ ( N |` Y ) ) |
31 |
30
|
adantr |
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ x e. Y ) -> M C_ ( N |` Y ) ) |
32 |
6
|
fdmd |
|- ( W e. NrmCVec -> dom M = Y ) |
33 |
32
|
eleq2d |
|- ( W e. NrmCVec -> ( x e. dom M <-> x e. Y ) ) |
34 |
33
|
biimpar |
|- ( ( W e. NrmCVec /\ x e. Y ) -> x e. dom M ) |
35 |
5 34
|
sylan |
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ x e. Y ) -> x e. dom M ) |
36 |
|
funssfv |
|- ( ( Fun ( N |` Y ) /\ M C_ ( N |` Y ) /\ x e. dom M ) -> ( ( N |` Y ) ` x ) = ( M ` x ) ) |
37 |
18 31 35 36
|
syl3anc |
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ x e. Y ) -> ( ( N |` Y ) ` x ) = ( M ` x ) ) |
38 |
37
|
eqcomd |
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ x e. Y ) -> ( M ` x ) = ( ( N |` Y ) ` x ) ) |
39 |
8 15 38
|
eqfnfvd |
|- ( ( U e. NrmCVec /\ W e. H ) -> M = ( N |` Y ) ) |