Step |
Hyp |
Ref |
Expression |
1 |
|
sspnv.h |
|- H = ( SubSp ` U ) |
2 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
3 |
|
eqid |
|- ( +v ` W ) = ( +v ` W ) |
4 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
5 |
|
eqid |
|- ( .sOLD ` W ) = ( .sOLD ` W ) |
6 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
7 |
|
eqid |
|- ( normCV ` W ) = ( normCV ` W ) |
8 |
2 3 4 5 6 7 1
|
isssp |
|- ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) ) ) |
9 |
8
|
simprbda |
|- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |