| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sspnv.h |  |-  H = ( SubSp ` U ) | 
						
							| 2 |  | eqid |  |-  ( +v ` U ) = ( +v ` U ) | 
						
							| 3 |  | eqid |  |-  ( +v ` W ) = ( +v ` W ) | 
						
							| 4 |  | eqid |  |-  ( .sOLD ` U ) = ( .sOLD ` U ) | 
						
							| 5 |  | eqid |  |-  ( .sOLD ` W ) = ( .sOLD ` W ) | 
						
							| 6 |  | eqid |  |-  ( normCV ` U ) = ( normCV ` U ) | 
						
							| 7 |  | eqid |  |-  ( normCV ` W ) = ( normCV ` W ) | 
						
							| 8 | 2 3 4 5 6 7 1 | isssp |  |-  ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( ( +v ` W ) C_ ( +v ` U ) /\ ( .sOLD ` W ) C_ ( .sOLD ` U ) /\ ( normCV ` W ) C_ ( normCV ` U ) ) ) ) ) | 
						
							| 9 | 8 | simprbda |  |-  ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |