Step |
Hyp |
Ref |
Expression |
1 |
|
sspn.y |
|- Y = ( BaseSet ` W ) |
2 |
|
sspn.n |
|- N = ( normCV ` U ) |
3 |
|
sspn.m |
|- M = ( normCV ` W ) |
4 |
|
sspn.h |
|- H = ( SubSp ` U ) |
5 |
1 2 3 4
|
sspn |
|- ( ( U e. NrmCVec /\ W e. H ) -> M = ( N |` Y ) ) |
6 |
5
|
fveq1d |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( M ` A ) = ( ( N |` Y ) ` A ) ) |
7 |
|
fvres |
|- ( A e. Y -> ( ( N |` Y ) ` A ) = ( N ` A ) ) |
8 |
6 7
|
sylan9eq |
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ A e. Y ) -> ( M ` A ) = ( N ` A ) ) |
9 |
8
|
3impa |
|- ( ( U e. NrmCVec /\ W e. H /\ A e. Y ) -> ( M ` A ) = ( N ` A ) ) |