| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uncom |
|- ( (/) u. { B , C } ) = ( { B , C } u. (/) ) |
| 2 |
|
un0 |
|- ( { B , C } u. (/) ) = { B , C } |
| 3 |
1 2
|
eqtri |
|- ( (/) u. { B , C } ) = { B , C } |
| 4 |
3
|
sseq2i |
|- ( A C_ ( (/) u. { B , C } ) <-> A C_ { B , C } ) |
| 5 |
|
0ss |
|- (/) C_ A |
| 6 |
5
|
biantrur |
|- ( A C_ ( (/) u. { B , C } ) <-> ( (/) C_ A /\ A C_ ( (/) u. { B , C } ) ) ) |
| 7 |
4 6
|
bitr3i |
|- ( A C_ { B , C } <-> ( (/) C_ A /\ A C_ ( (/) u. { B , C } ) ) ) |
| 8 |
|
ssunpr |
|- ( ( (/) C_ A /\ A C_ ( (/) u. { B , C } ) ) <-> ( ( A = (/) \/ A = ( (/) u. { B } ) ) \/ ( A = ( (/) u. { C } ) \/ A = ( (/) u. { B , C } ) ) ) ) |
| 9 |
|
uncom |
|- ( (/) u. { B } ) = ( { B } u. (/) ) |
| 10 |
|
un0 |
|- ( { B } u. (/) ) = { B } |
| 11 |
9 10
|
eqtri |
|- ( (/) u. { B } ) = { B } |
| 12 |
11
|
eqeq2i |
|- ( A = ( (/) u. { B } ) <-> A = { B } ) |
| 13 |
12
|
orbi2i |
|- ( ( A = (/) \/ A = ( (/) u. { B } ) ) <-> ( A = (/) \/ A = { B } ) ) |
| 14 |
|
uncom |
|- ( (/) u. { C } ) = ( { C } u. (/) ) |
| 15 |
|
un0 |
|- ( { C } u. (/) ) = { C } |
| 16 |
14 15
|
eqtri |
|- ( (/) u. { C } ) = { C } |
| 17 |
16
|
eqeq2i |
|- ( A = ( (/) u. { C } ) <-> A = { C } ) |
| 18 |
3
|
eqeq2i |
|- ( A = ( (/) u. { B , C } ) <-> A = { B , C } ) |
| 19 |
17 18
|
orbi12i |
|- ( ( A = ( (/) u. { C } ) \/ A = ( (/) u. { B , C } ) ) <-> ( A = { C } \/ A = { B , C } ) ) |
| 20 |
13 19
|
orbi12i |
|- ( ( ( A = (/) \/ A = ( (/) u. { B } ) ) \/ ( A = ( (/) u. { C } ) \/ A = ( (/) u. { B , C } ) ) ) <-> ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) ) |
| 21 |
7 8 20
|
3bitri |
|- ( A C_ { B , C } <-> ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) ) |