Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
|- ( (/) u. { B , C } ) = ( { B , C } u. (/) ) |
2 |
|
un0 |
|- ( { B , C } u. (/) ) = { B , C } |
3 |
1 2
|
eqtri |
|- ( (/) u. { B , C } ) = { B , C } |
4 |
3
|
sseq2i |
|- ( A C_ ( (/) u. { B , C } ) <-> A C_ { B , C } ) |
5 |
|
0ss |
|- (/) C_ A |
6 |
5
|
biantrur |
|- ( A C_ ( (/) u. { B , C } ) <-> ( (/) C_ A /\ A C_ ( (/) u. { B , C } ) ) ) |
7 |
4 6
|
bitr3i |
|- ( A C_ { B , C } <-> ( (/) C_ A /\ A C_ ( (/) u. { B , C } ) ) ) |
8 |
|
ssunpr |
|- ( ( (/) C_ A /\ A C_ ( (/) u. { B , C } ) ) <-> ( ( A = (/) \/ A = ( (/) u. { B } ) ) \/ ( A = ( (/) u. { C } ) \/ A = ( (/) u. { B , C } ) ) ) ) |
9 |
|
uncom |
|- ( (/) u. { B } ) = ( { B } u. (/) ) |
10 |
|
un0 |
|- ( { B } u. (/) ) = { B } |
11 |
9 10
|
eqtri |
|- ( (/) u. { B } ) = { B } |
12 |
11
|
eqeq2i |
|- ( A = ( (/) u. { B } ) <-> A = { B } ) |
13 |
12
|
orbi2i |
|- ( ( A = (/) \/ A = ( (/) u. { B } ) ) <-> ( A = (/) \/ A = { B } ) ) |
14 |
|
uncom |
|- ( (/) u. { C } ) = ( { C } u. (/) ) |
15 |
|
un0 |
|- ( { C } u. (/) ) = { C } |
16 |
14 15
|
eqtri |
|- ( (/) u. { C } ) = { C } |
17 |
16
|
eqeq2i |
|- ( A = ( (/) u. { C } ) <-> A = { C } ) |
18 |
3
|
eqeq2i |
|- ( A = ( (/) u. { B , C } ) <-> A = { B , C } ) |
19 |
17 18
|
orbi12i |
|- ( ( A = ( (/) u. { C } ) \/ A = ( (/) u. { B , C } ) ) <-> ( A = { C } \/ A = { B , C } ) ) |
20 |
13 19
|
orbi12i |
|- ( ( ( A = (/) \/ A = ( (/) u. { B } ) ) \/ ( A = ( (/) u. { C } ) \/ A = ( (/) u. { B , C } ) ) ) <-> ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) ) |
21 |
7 8 20
|
3bitri |
|- ( A C_ { B , C } <-> ( ( A = (/) \/ A = { B } ) \/ ( A = { C } \/ A = { B , C } ) ) ) |