Step |
Hyp |
Ref |
Expression |
1 |
|
sseqin2 |
|- ( B C_ A <-> ( A i^i B ) = B ) |
2 |
|
df-pred |
|- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
3 |
2
|
sseq1i |
|- ( Pred ( R , A , X ) C_ B <-> ( A i^i ( `' R " { X } ) ) C_ B ) |
4 |
|
df-ss |
|- ( ( A i^i ( `' R " { X } ) ) C_ B <-> ( ( A i^i ( `' R " { X } ) ) i^i B ) = ( A i^i ( `' R " { X } ) ) ) |
5 |
|
in32 |
|- ( ( A i^i ( `' R " { X } ) ) i^i B ) = ( ( A i^i B ) i^i ( `' R " { X } ) ) |
6 |
5
|
eqeq1i |
|- ( ( ( A i^i ( `' R " { X } ) ) i^i B ) = ( A i^i ( `' R " { X } ) ) <-> ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) |
7 |
3 4 6
|
3bitri |
|- ( Pred ( R , A , X ) C_ B <-> ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) |
8 |
|
ineq1 |
|- ( ( A i^i B ) = B -> ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( B i^i ( `' R " { X } ) ) ) |
9 |
8
|
eqeq1d |
|- ( ( A i^i B ) = B -> ( ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) <-> ( B i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) ) |
10 |
9
|
biimpa |
|- ( ( ( A i^i B ) = B /\ ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) -> ( B i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) |
11 |
|
df-pred |
|- Pred ( R , B , X ) = ( B i^i ( `' R " { X } ) ) |
12 |
10 11 2
|
3eqtr4g |
|- ( ( ( A i^i B ) = B /\ ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) -> Pred ( R , B , X ) = Pred ( R , A , X ) ) |
13 |
12
|
eqcomd |
|- ( ( ( A i^i B ) = B /\ ( ( A i^i B ) i^i ( `' R " { X } ) ) = ( A i^i ( `' R " { X } ) ) ) -> Pred ( R , A , X ) = Pred ( R , B , X ) ) |
14 |
1 7 13
|
syl2anb |
|- ( ( B C_ A /\ Pred ( R , A , X ) C_ B ) -> Pred ( R , A , X ) = Pred ( R , B , X ) ) |