Step |
Hyp |
Ref |
Expression |
1 |
|
inpreima |
|- ( Fun F -> ( `' F " ( A i^i B ) ) = ( ( `' F " A ) i^i ( `' F " B ) ) ) |
2 |
|
df-ss |
|- ( A C_ B <-> ( A i^i B ) = A ) |
3 |
2
|
biimpi |
|- ( A C_ B -> ( A i^i B ) = A ) |
4 |
3
|
imaeq2d |
|- ( A C_ B -> ( `' F " ( A i^i B ) ) = ( `' F " A ) ) |
5 |
1 4
|
sylan9req |
|- ( ( Fun F /\ A C_ B ) -> ( ( `' F " A ) i^i ( `' F " B ) ) = ( `' F " A ) ) |
6 |
|
df-ss |
|- ( ( `' F " A ) C_ ( `' F " B ) <-> ( ( `' F " A ) i^i ( `' F " B ) ) = ( `' F " A ) ) |
7 |
5 6
|
sylibr |
|- ( ( Fun F /\ A C_ B ) -> ( `' F " A ) C_ ( `' F " B ) ) |