Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspss | |- ( A C_ B <-> ( A C. B \/ A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss2 | |- ( A C. B <-> ( A C_ B /\ -. A = B ) ) |
|
| 2 | 1 | simplbi2 | |- ( A C_ B -> ( -. A = B -> A C. B ) ) |
| 3 | 2 | con1d | |- ( A C_ B -> ( -. A C. B -> A = B ) ) |
| 4 | 3 | orrd | |- ( A C_ B -> ( A C. B \/ A = B ) ) |
| 5 | pssss | |- ( A C. B -> A C_ B ) |
|
| 6 | eqimss | |- ( A = B -> A C_ B ) |
|
| 7 | 5 6 | jaoi | |- ( ( A C. B \/ A = B ) -> A C_ B ) |
| 8 | 4 7 | impbii | |- ( A C_ B <-> ( A C. B \/ A = B ) ) |