Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sspsstrd.1 | |- ( ph -> A C_ B ) |
|
sspsstrd.2 | |- ( ph -> B C. C ) |
||
Assertion | sspsstrd | |- ( ph -> A C. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspsstrd.1 | |- ( ph -> A C_ B ) |
|
2 | sspsstrd.2 | |- ( ph -> B C. C ) |
|
3 | sspsstr | |- ( ( A C_ B /\ B C. C ) -> A C. C ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> A C. C ) |