Metamath Proof Explorer


Theorem sspsstrd

Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses sspsstrd.1
|- ( ph -> A C_ B )
sspsstrd.2
|- ( ph -> B C. C )
Assertion sspsstrd
|- ( ph -> A C. C )

Proof

Step Hyp Ref Expression
1 sspsstrd.1
 |-  ( ph -> A C_ B )
2 sspsstrd.2
 |-  ( ph -> B C. C )
3 sspsstr
 |-  ( ( A C_ B /\ B C. C ) -> A C. C )
4 1 2 3 syl2anc
 |-  ( ph -> A C. C )