Step |
Hyp |
Ref |
Expression |
1 |
|
sspw |
|- ( A C_ B -> ~P A C_ ~P B ) |
2 |
|
ssel |
|- ( ~P A C_ ~P B -> ( { x } e. ~P A -> { x } e. ~P B ) ) |
3 |
|
snex |
|- { x } e. _V |
4 |
3
|
elpw |
|- ( { x } e. ~P A <-> { x } C_ A ) |
5 |
|
vex |
|- x e. _V |
6 |
5
|
snss |
|- ( x e. A <-> { x } C_ A ) |
7 |
4 6
|
bitr4i |
|- ( { x } e. ~P A <-> x e. A ) |
8 |
3
|
elpw |
|- ( { x } e. ~P B <-> { x } C_ B ) |
9 |
5
|
snss |
|- ( x e. B <-> { x } C_ B ) |
10 |
8 9
|
bitr4i |
|- ( { x } e. ~P B <-> x e. B ) |
11 |
2 7 10
|
3imtr3g |
|- ( ~P A C_ ~P B -> ( x e. A -> x e. B ) ) |
12 |
11
|
ssrdv |
|- ( ~P A C_ ~P B -> A C_ B ) |
13 |
1 12
|
impbii |
|- ( A C_ B <-> ~P A C_ ~P B ) |