Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- x e. _V |
2 |
1
|
a1i |
|- ( T. -> x e. _V ) |
3 |
|
id |
|- ( A C_ B -> A C_ B ) |
4 |
|
id |
|- ( x e. ~P A -> x e. ~P A ) |
5 |
|
elpwi |
|- ( x e. ~P A -> x C_ A ) |
6 |
4 5
|
syl |
|- ( x e. ~P A -> x C_ A ) |
7 |
|
sstr |
|- ( ( x C_ A /\ A C_ B ) -> x C_ B ) |
8 |
7
|
ancoms |
|- ( ( A C_ B /\ x C_ A ) -> x C_ B ) |
9 |
3 6 8
|
syl2an |
|- ( ( A C_ B /\ x e. ~P A ) -> x C_ B ) |
10 |
2 9
|
elpwgded |
|- ( ( T. /\ ( A C_ B /\ x e. ~P A ) ) -> x e. ~P B ) |
11 |
2 9 10
|
uun0.1 |
|- ( ( A C_ B /\ x e. ~P A ) -> x e. ~P B ) |
12 |
11
|
ex |
|- ( A C_ B -> ( x e. ~P A -> x e. ~P B ) ) |
13 |
12
|
alrimiv |
|- ( A C_ B -> A. x ( x e. ~P A -> x e. ~P B ) ) |
14 |
|
dfss2 |
|- ( ~P A C_ ~P B <-> A. x ( x e. ~P A -> x e. ~P B ) ) |
15 |
14
|
biimpri |
|- ( A. x ( x e. ~P A -> x e. ~P B ) -> ~P A C_ ~P B ) |
16 |
13 15
|
syl |
|- ( A C_ B -> ~P A C_ ~P B ) |
17 |
16
|
iin1 |
|- ( A C_ B -> ~P A C_ ~P B ) |