Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) using conjunction-form virtual hypothesis collections. It was completed manually, but has the potential to be completed automatically by a tools program which would invoke Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimp is sspwimpVD without virtual deductions and was derived from sspwimpVD . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | |- (. A C_ B ->. A C_ B ). | 
| 2:: | |- (. .............. x e. ~P A ->. x e. ~P A ). | 
| 3:2: | |- (. .............. x e. ~P A ->. x C_ A ). | 
| 4:3,1: | |- (. (. A C_ B ,. x e. ~P A ). ->. x C_ B ). | 
| 5:: | |- x e.V | 
| 6:4,5: | |- (. (. A C B ,. x e. ~P A ). ->. x e. ~P B ). | 
| 7:6: | |- (. A C_ B ->. ( x e. ~P A -> x e. ~P B ) ). | 
| 8:7: | |- (. A C_ B ->. A. x ( x e. ~P A -> x e. ~P B ) ). | 
| 9:8: | |- (. A C_ B ->. ~P A C_ ~P B ). | 
| qed:9: | |- ( A C_ B -> ~P A C_ ~P B ) | 
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspwimpVD | |- ( A C_ B -> ~P A C_ ~P B )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex | |- x e. _V  | 
						|
| 2 | 1 | vd01 | |- (. T. ->. x e. _V ).  | 
						
| 3 | idn1 | |- (. A C_ B ->. A C_ B ).  | 
						|
| 4 | idn1 | |- (. x e. ~P A ->. x e. ~P A ).  | 
						|
| 5 | elpwi | |- ( x e. ~P A -> x C_ A )  | 
						|
| 6 | 4 5 | el1 | |- (. x e. ~P A ->. x C_ A ).  | 
						
| 7 | sstr | |- ( ( x C_ A /\ A C_ B ) -> x C_ B )  | 
						|
| 8 | 7 | ancoms | |- ( ( A C_ B /\ x C_ A ) -> x C_ B )  | 
						
| 9 | 3 6 8 | el12 | |- (. (. A C_ B ,. x e. ~P A ). ->. x C_ B ).  | 
						
| 10 | 2 9 | elpwgdedVD | |- (. (. T. ,. (. A C_ B ,. x e. ~P A ). ). ->. x e. ~P B ).  | 
						
| 11 | 2 9 10 | un0.1 | |- (. (. A C_ B ,. x e. ~P A ). ->. x e. ~P B ).  | 
						
| 12 | 11 | int2 | |- (. A C_ B ->. ( x e. ~P A -> x e. ~P B ) ).  | 
						
| 13 | 12 | gen11 | |- (. A C_ B ->. A. x ( x e. ~P A -> x e. ~P B ) ).  | 
						
| 14 | df-ss | |- ( ~P A C_ ~P B <-> A. x ( x e. ~P A -> x e. ~P B ) )  | 
						|
| 15 | 14 | biimpri | |- ( A. x ( x e. ~P A -> x e. ~P B ) -> ~P A C_ ~P B )  | 
						
| 16 | 13 15 | el1 | |- (. A C_ B ->. ~P A C_ ~P B ).  | 
						
| 17 | 16 | in1 | |- ( A C_ B -> ~P A C_ ~P B )  |