Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) using conjunction-form virtual hypothesis collections. It was completed automatically by a tools program which would invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimpcf is sspwimpcfVD without virtual deductions and was derived from sspwimpcfVD . The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)
1:: | |- (. A C_ B ->. A C_ B ). |
2:: | |- (. ........... x e. ~P A ->. x e. ~P A ). |
3:2: | |- (. ........... x e. ~P A ->. x C_ A ). |
4:3,1: | |- (. (. A C_ B ,. x e. ~P A ). ->. x C_ B ). |
5:: | |- x e.V |
6:4,5: | |- (. (. A C B ,. x e. ~P A ). ->. x e. ~P B ). |
7:6: | |- (. A C_ B ->. ( x e. ~P A -> x e. ~P B ) ). |
8:7: | |- (. A C_ B ->. A. x ( x e. ~P A -> x e. ~P B ) ). |
9:8: | |- (. A C_ B ->. ~P A C_ ~P B ). |
qed:9: | |- ( A C_ B -> ~P A C_ ~P B ) |
Ref | Expression | ||
---|---|---|---|
Assertion | sspwimpcfVD | |- ( A C_ B -> ~P A C_ ~P B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |- x e. _V |
|
2 | idn1 | |- (. A C_ B ->. A C_ B ). |
|
3 | idn1 | |- (. x e. ~P A ->. x e. ~P A ). |
|
4 | elpwi | |- ( x e. ~P A -> x C_ A ) |
|
5 | 3 4 | el1 | |- (. x e. ~P A ->. x C_ A ). |
6 | sstr2 | |- ( x C_ A -> ( A C_ B -> x C_ B ) ) |
|
7 | 6 | impcom | |- ( ( A C_ B /\ x C_ A ) -> x C_ B ) |
8 | 2 5 7 | el12 | |- (. (. A C_ B ,. x e. ~P A ). ->. x C_ B ). |
9 | elpwg | |- ( x e. _V -> ( x e. ~P B <-> x C_ B ) ) |
|
10 | 9 | biimpar | |- ( ( x e. _V /\ x C_ B ) -> x e. ~P B ) |
11 | 1 8 10 | el021old | |- (. (. A C_ B ,. x e. ~P A ). ->. x e. ~P B ). |
12 | 11 | int2 | |- (. A C_ B ->. ( x e. ~P A -> x e. ~P B ) ). |
13 | 12 | gen11 | |- (. A C_ B ->. A. x ( x e. ~P A -> x e. ~P B ) ). |
14 | dfss2 | |- ( ~P A C_ ~P B <-> A. x ( x e. ~P A -> x e. ~P B ) ) |
|
15 | 14 | biimpri | |- ( A. x ( x e. ~P A -> x e. ~P B ) -> ~P A C_ ~P B ) |
16 | 13 15 | el1 | |- (. A C_ B ->. ~P A C_ ~P B ). |
17 | 16 | in1 | |- ( A C_ B -> ~P A C_ ~P B ) |