Metamath Proof Explorer


Theorem sspwimpcfVD

Description: The following User's Proof is a Virtual Deduction proof (see wvd1 ) using conjunction-form virtual hypothesis collections. It was completed automatically by a tools program which would invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sspwimpcf is sspwimpcfVD without virtual deductions and was derived from sspwimpcfVD . The version of completeusersproof.cmd used is capable of only generating conjunction-form unification theorems, not unification deductions. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

1:: |- (. A C_ B ->. A C_ B ).
2:: |- (. ........... x e. ~P A ->. x e. ~P A ).
3:2: |- (. ........... x e. ~P A ->. x C_ A ).
4:3,1: |- (. (. A C_ B ,. x e. ~P A ). ->. x C_ B ).
5:: |- x e.V
6:4,5: |- (. (. A C B ,. x e. ~P A ). ->. x e. ~P B ).
7:6: |- (. A C_ B ->. ( x e. ~P A -> x e. ~P B ) ).
8:7: |- (. A C_ B ->. A. x ( x e. ~P A -> x e. ~P B ) ).
9:8: |- (. A C_ B ->. ~P A C_ ~P B ).
qed:9: |- ( A C_ B -> ~P A C_ ~P B )

Ref Expression
Assertion sspwimpcfVD
|- ( A C_ B -> ~P A C_ ~P B )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 idn1
 |-  (. A C_ B ->. A C_ B ).
3 idn1
 |-  (. x e. ~P A ->. x e. ~P A ).
4 elpwi
 |-  ( x e. ~P A -> x C_ A )
5 3 4 el1
 |-  (. x e. ~P A ->. x C_ A ).
6 sstr2
 |-  ( x C_ A -> ( A C_ B -> x C_ B ) )
7 6 impcom
 |-  ( ( A C_ B /\ x C_ A ) -> x C_ B )
8 2 5 7 el12
 |-  (. (. A C_ B ,. x e. ~P A ). ->. x C_ B ).
9 elpwg
 |-  ( x e. _V -> ( x e. ~P B <-> x C_ B ) )
10 9 biimpar
 |-  ( ( x e. _V /\ x C_ B ) -> x e. ~P B )
11 1 8 10 el021old
 |-  (. (. A C_ B ,. x e. ~P A ). ->. x e. ~P B ).
12 11 int2
 |-  (. A C_ B ->. ( x e. ~P A -> x e. ~P B ) ).
13 12 gen11
 |-  (. A C_ B ->. A. x ( x e. ~P A -> x e. ~P B ) ).
14 dfss2
 |-  ( ~P A C_ ~P B <-> A. x ( x e. ~P A -> x e. ~P B ) )
15 14 biimpri
 |-  ( A. x ( x e. ~P A -> x e. ~P B ) -> ~P A C_ ~P B )
16 13 15 el1
 |-  (. A C_ B ->. ~P A C_ ~P B ).
17 16 in1
 |-  ( A C_ B -> ~P A C_ ~P B )