Step |
Hyp |
Ref |
Expression |
1 |
|
sspz.z |
|- Z = ( 0vec ` U ) |
2 |
|
sspz.q |
|- Q = ( 0vec ` W ) |
3 |
|
sspz.h |
|- H = ( SubSp ` U ) |
4 |
3
|
sspnv |
|- ( ( U e. NrmCVec /\ W e. H ) -> W e. NrmCVec ) |
5 |
|
eqid |
|- ( BaseSet ` W ) = ( BaseSet ` W ) |
6 |
5 2
|
nvzcl |
|- ( W e. NrmCVec -> Q e. ( BaseSet ` W ) ) |
7 |
6 6
|
jca |
|- ( W e. NrmCVec -> ( Q e. ( BaseSet ` W ) /\ Q e. ( BaseSet ` W ) ) ) |
8 |
4 7
|
syl |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( Q e. ( BaseSet ` W ) /\ Q e. ( BaseSet ` W ) ) ) |
9 |
|
eqid |
|- ( -v ` U ) = ( -v ` U ) |
10 |
|
eqid |
|- ( -v ` W ) = ( -v ` W ) |
11 |
5 9 10 3
|
sspmval |
|- ( ( ( U e. NrmCVec /\ W e. H ) /\ ( Q e. ( BaseSet ` W ) /\ Q e. ( BaseSet ` W ) ) ) -> ( Q ( -v ` W ) Q ) = ( Q ( -v ` U ) Q ) ) |
12 |
8 11
|
mpdan |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( Q ( -v ` W ) Q ) = ( Q ( -v ` U ) Q ) ) |
13 |
5 10 2
|
nvmid |
|- ( ( W e. NrmCVec /\ Q e. ( BaseSet ` W ) ) -> ( Q ( -v ` W ) Q ) = Q ) |
14 |
4 6 13
|
syl2anc2 |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( Q ( -v ` W ) Q ) = Q ) |
15 |
|
eqid |
|- ( BaseSet ` U ) = ( BaseSet ` U ) |
16 |
15 5 3
|
sspba |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( BaseSet ` W ) C_ ( BaseSet ` U ) ) |
17 |
4 6
|
syl |
|- ( ( U e. NrmCVec /\ W e. H ) -> Q e. ( BaseSet ` W ) ) |
18 |
16 17
|
sseldd |
|- ( ( U e. NrmCVec /\ W e. H ) -> Q e. ( BaseSet ` U ) ) |
19 |
15 9 1
|
nvmid |
|- ( ( U e. NrmCVec /\ Q e. ( BaseSet ` U ) ) -> ( Q ( -v ` U ) Q ) = Z ) |
20 |
18 19
|
syldan |
|- ( ( U e. NrmCVec /\ W e. H ) -> ( Q ( -v ` U ) Q ) = Z ) |
21 |
12 14 20
|
3eqtr3d |
|- ( ( U e. NrmCVec /\ W e. H ) -> Q = Z ) |