Metamath Proof Explorer


Theorem ssrab2f

Description: Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis ssrab2f.1
|- F/_ x A
Assertion ssrab2f
|- { x e. A | ph } C_ A

Proof

Step Hyp Ref Expression
1 ssrab2f.1
 |-  F/_ x A
2 nfrab1
 |-  F/_ x { x e. A | ph }
3 2 1 dfss3f
 |-  ( { x e. A | ph } C_ A <-> A. x e. { x e. A | ph } x e. A )
4 rabidim1
 |-  ( x e. { x e. A | ph } -> x e. A )
5 3 4 mprgbir
 |-  { x e. A | ph } C_ A