Metamath Proof Explorer


Theorem ssrabdf

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses ssrabdf.1
|- F/_ x A
ssrabdf.2
|- F/_ x B
ssrabdf.3
|- F/ x ph
ssrabdf.4
|- ( ph -> B C_ A )
ssrabdf.5
|- ( ( ph /\ x e. B ) -> ps )
Assertion ssrabdf
|- ( ph -> B C_ { x e. A | ps } )

Proof

Step Hyp Ref Expression
1 ssrabdf.1
 |-  F/_ x A
2 ssrabdf.2
 |-  F/_ x B
3 ssrabdf.3
 |-  F/ x ph
4 ssrabdf.4
 |-  ( ph -> B C_ A )
5 ssrabdf.5
 |-  ( ( ph /\ x e. B ) -> ps )
6 3 5 ralrimia
 |-  ( ph -> A. x e. B ps )
7 2 1 ssrabf
 |-  ( B C_ { x e. A | ps } <-> ( B C_ A /\ A. x e. B ps ) )
8 4 6 7 sylanbrc
 |-  ( ph -> B C_ { x e. A | ps } )