Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssrabdv.1 | |- ( ph -> B C_ A ) |
|
ssrabdv.2 | |- ( ( ph /\ x e. B ) -> ps ) |
||
Assertion | ssrabdv | |- ( ph -> B C_ { x e. A | ps } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrabdv.1 | |- ( ph -> B C_ A ) |
|
2 | ssrabdv.2 | |- ( ( ph /\ x e. B ) -> ps ) |
|
3 | 2 | ralrimiva | |- ( ph -> A. x e. B ps ) |
4 | ssrab | |- ( B C_ { x e. A | ps } <-> ( B C_ A /\ A. x e. B ps ) ) |
|
5 | 1 3 4 | sylanbrc | |- ( ph -> B C_ { x e. A | ps } ) |