Metamath Proof Explorer


Theorem ssrabdv

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006)

Ref Expression
Hypotheses ssrabdv.1
|- ( ph -> B C_ A )
ssrabdv.2
|- ( ( ph /\ x e. B ) -> ps )
Assertion ssrabdv
|- ( ph -> B C_ { x e. A | ps } )

Proof

Step Hyp Ref Expression
1 ssrabdv.1
 |-  ( ph -> B C_ A )
2 ssrabdv.2
 |-  ( ( ph /\ x e. B ) -> ps )
3 2 ralrimiva
 |-  ( ph -> A. x e. B ps )
4 ssrab
 |-  ( B C_ { x e. A | ps } <-> ( B C_ A /\ A. x e. B ps ) )
5 1 3 4 sylanbrc
 |-  ( ph -> B C_ { x e. A | ps } )