Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | ssrabeq | |- ( V C_ { x e. V | ph } <-> V = { x e. V | ph } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 | |- { x e. V | ph } C_ V |
|
2 | 1 | biantru | |- ( V C_ { x e. V | ph } <-> ( V C_ { x e. V | ph } /\ { x e. V | ph } C_ V ) ) |
3 | eqss | |- ( V = { x e. V | ph } <-> ( V C_ { x e. V | ph } /\ { x e. V | ph } C_ V ) ) |
|
4 | 2 3 | bitr4i | |- ( V C_ { x e. V | ph } <-> V = { x e. V | ph } ) |