Metamath Proof Explorer


Theorem ssrabeq

Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017)

Ref Expression
Assertion ssrabeq
|- ( V C_ { x e. V | ph } <-> V = { x e. V | ph } )

Proof

Step Hyp Ref Expression
1 ssrab2
 |-  { x e. V | ph } C_ V
2 1 biantru
 |-  ( V C_ { x e. V | ph } <-> ( V C_ { x e. V | ph } /\ { x e. V | ph } C_ V ) )
3 eqss
 |-  ( V = { x e. V | ph } <-> ( V C_ { x e. V | ph } /\ { x e. V | ph } C_ V ) )
4 2 3 bitr4i
 |-  ( V C_ { x e. V | ph } <-> V = { x e. V | ph } )