Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssrd.0 | |- F/ x ph |
|
| ssrd.1 | |- F/_ x A |
||
| ssrd.2 | |- F/_ x B |
||
| ssrd.3 | |- ( ph -> ( x e. A -> x e. B ) ) |
||
| Assertion | ssrd | |- ( ph -> A C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrd.0 | |- F/ x ph |
|
| 2 | ssrd.1 | |- F/_ x A |
|
| 3 | ssrd.2 | |- F/_ x B |
|
| 4 | ssrd.3 | |- ( ph -> ( x e. A -> x e. B ) ) |
|
| 5 | 1 4 | alrimi | |- ( ph -> A. x ( x e. A -> x e. B ) ) |
| 6 | 2 3 | dfssf | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
| 7 | 5 6 | sylibr | |- ( ph -> A C_ B ) |