Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssrd.0 | |- F/ x ph |
|
ssrd.1 | |- F/_ x A |
||
ssrd.2 | |- F/_ x B |
||
ssrd.3 | |- ( ph -> ( x e. A -> x e. B ) ) |
||
Assertion | ssrd | |- ( ph -> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrd.0 | |- F/ x ph |
|
2 | ssrd.1 | |- F/_ x A |
|
3 | ssrd.2 | |- F/_ x B |
|
4 | ssrd.3 | |- ( ph -> ( x e. A -> x e. B ) ) |
|
5 | 1 4 | alrimi | |- ( ph -> A. x ( x e. A -> x e. B ) ) |
6 | 2 3 | dfss2f | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
7 | 5 6 | sylibr | |- ( ph -> A C_ B ) |