Metamath Proof Explorer


Theorem ssrd

Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypotheses ssrd.0
|- F/ x ph
ssrd.1
|- F/_ x A
ssrd.2
|- F/_ x B
ssrd.3
|- ( ph -> ( x e. A -> x e. B ) )
Assertion ssrd
|- ( ph -> A C_ B )

Proof

Step Hyp Ref Expression
1 ssrd.0
 |-  F/ x ph
2 ssrd.1
 |-  F/_ x A
3 ssrd.2
 |-  F/_ x B
4 ssrd.3
 |-  ( ph -> ( x e. A -> x e. B ) )
5 1 4 alrimi
 |-  ( ph -> A. x ( x e. A -> x e. B ) )
6 2 3 dfss2f
 |-  ( A C_ B <-> A. x ( x e. A -> x e. B ) )
7 5 6 sylibr
 |-  ( ph -> A C_ B )