Description: Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssrdv.1 | |- ( ph -> ( x e. A -> x e. B ) ) |
|
| Assertion | ssrdv | |- ( ph -> A C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrdv.1 | |- ( ph -> ( x e. A -> x e. B ) ) |
|
| 2 | 1 | alrimiv | |- ( ph -> A. x ( x e. A -> x e. B ) ) |
| 3 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 4 | 2 3 | sylibr | |- ( ph -> A C_ B ) |