Step |
Hyp |
Ref |
Expression |
1 |
|
elrng |
|- ( Y e. ran R -> ( Y e. ran R <-> E. a a R Y ) ) |
2 |
|
ssbr |
|- ( R C_ ( A X. B ) -> ( a R Y -> a ( A X. B ) Y ) ) |
3 |
|
brxp |
|- ( a ( A X. B ) Y <-> ( a e. A /\ Y e. B ) ) |
4 |
3
|
simplbi |
|- ( a ( A X. B ) Y -> a e. A ) |
5 |
2 4
|
syl6 |
|- ( R C_ ( A X. B ) -> ( a R Y -> a e. A ) ) |
6 |
5
|
ancrd |
|- ( R C_ ( A X. B ) -> ( a R Y -> ( a e. A /\ a R Y ) ) ) |
7 |
6
|
adantl |
|- ( ( Y e. ran R /\ R C_ ( A X. B ) ) -> ( a R Y -> ( a e. A /\ a R Y ) ) ) |
8 |
7
|
eximdv |
|- ( ( Y e. ran R /\ R C_ ( A X. B ) ) -> ( E. a a R Y -> E. a ( a e. A /\ a R Y ) ) ) |
9 |
8
|
ex |
|- ( Y e. ran R -> ( R C_ ( A X. B ) -> ( E. a a R Y -> E. a ( a e. A /\ a R Y ) ) ) ) |
10 |
9
|
com23 |
|- ( Y e. ran R -> ( E. a a R Y -> ( R C_ ( A X. B ) -> E. a ( a e. A /\ a R Y ) ) ) ) |
11 |
1 10
|
sylbid |
|- ( Y e. ran R -> ( Y e. ran R -> ( R C_ ( A X. B ) -> E. a ( a e. A /\ a R Y ) ) ) ) |
12 |
11
|
pm2.43i |
|- ( Y e. ran R -> ( R C_ ( A X. B ) -> E. a ( a e. A /\ a R Y ) ) ) |
13 |
12
|
impcom |
|- ( ( R C_ ( A X. B ) /\ Y e. ran R ) -> E. a ( a e. A /\ a R Y ) ) |
14 |
|
df-rex |
|- ( E. a e. A a R Y <-> E. a ( a e. A /\ a R Y ) ) |
15 |
13 14
|
sylibr |
|- ( ( R C_ ( A X. B ) /\ Y e. ran R ) -> E. a e. A a R Y ) |