Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssres2 | |- ( A C_ B -> ( C |` A ) C_ ( C |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss1 | |- ( A C_ B -> ( A X. _V ) C_ ( B X. _V ) ) |
|
| 2 | sslin | |- ( ( A X. _V ) C_ ( B X. _V ) -> ( C i^i ( A X. _V ) ) C_ ( C i^i ( B X. _V ) ) ) |
|
| 3 | 1 2 | syl | |- ( A C_ B -> ( C i^i ( A X. _V ) ) C_ ( C i^i ( B X. _V ) ) ) |
| 4 | df-res | |- ( C |` A ) = ( C i^i ( A X. _V ) ) |
|
| 5 | df-res | |- ( C |` B ) = ( C i^i ( B X. _V ) ) |
|
| 6 | 3 4 5 | 3sstr4g | |- ( A C_ B -> ( C |` A ) C_ ( C |` B ) ) |