Metamath Proof Explorer


Theorem ssrexf

Description: Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses ssrexf.1
|- F/_ x A
ssrexf.2
|- F/_ x B
Assertion ssrexf
|- ( A C_ B -> ( E. x e. A ph -> E. x e. B ph ) )

Proof

Step Hyp Ref Expression
1 ssrexf.1
 |-  F/_ x A
2 ssrexf.2
 |-  F/_ x B
3 1 2 nfss
 |-  F/ x A C_ B
4 ssel
 |-  ( A C_ B -> ( x e. A -> x e. B ) )
5 4 anim1d
 |-  ( A C_ B -> ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) )
6 3 5 eximd
 |-  ( A C_ B -> ( E. x ( x e. A /\ ph ) -> E. x ( x e. B /\ ph ) ) )
7 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
8 df-rex
 |-  ( E. x e. B ph <-> E. x ( x e. B /\ ph ) )
9 6 7 8 3imtr4g
 |-  ( A C_ B -> ( E. x e. A ph -> E. x e. B ph ) )