Description: Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssrexf.1 | |- F/_ x A |
|
ssrexf.2 | |- F/_ x B |
||
Assertion | ssrexf | |- ( A C_ B -> ( E. x e. A ph -> E. x e. B ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexf.1 | |- F/_ x A |
|
2 | ssrexf.2 | |- F/_ x B |
|
3 | 1 2 | nfss | |- F/ x A C_ B |
4 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
5 | 4 | anim1d | |- ( A C_ B -> ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) ) |
6 | 3 5 | eximd | |- ( A C_ B -> ( E. x ( x e. A /\ ph ) -> E. x ( x e. B /\ ph ) ) ) |
7 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
8 | df-rex | |- ( E. x e. B ph <-> E. x ( x e. B /\ ph ) ) |
|
9 | 6 7 8 | 3imtr4g | |- ( A C_ B -> ( E. x e. A ph -> E. x e. B ph ) ) |