Step |
Hyp |
Ref |
Expression |
1 |
|
ssrexf.1 |
|- F/_ x A |
2 |
|
ssrexf.2 |
|- F/_ x B |
3 |
1 2
|
dfss2f |
|- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
4 |
3
|
biimpi |
|- ( A C_ B -> A. x ( x e. A -> x e. B ) ) |
5 |
|
pm3.45 |
|- ( ( x e. A -> x e. B ) -> ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) ) |
6 |
5
|
alimi |
|- ( A. x ( x e. A -> x e. B ) -> A. x ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) ) |
7 |
|
moim |
|- ( A. x ( ( x e. A /\ ph ) -> ( x e. B /\ ph ) ) -> ( E* x ( x e. B /\ ph ) -> E* x ( x e. A /\ ph ) ) ) |
8 |
4 6 7
|
3syl |
|- ( A C_ B -> ( E* x ( x e. B /\ ph ) -> E* x ( x e. A /\ ph ) ) ) |
9 |
|
df-rmo |
|- ( E* x e. B ph <-> E* x ( x e. B /\ ph ) ) |
10 |
|
df-rmo |
|- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
11 |
8 9 10
|
3imtr4g |
|- ( A C_ B -> ( E* x e. B ph -> E* x e. A ph ) ) |