Step |
Hyp |
Ref |
Expression |
1 |
|
inss2 |
|- ( C i^i ( A X. B ) ) C_ ( A X. B ) |
2 |
1
|
rnssi |
|- ran ( C i^i ( A X. B ) ) C_ ran ( A X. B ) |
3 |
|
rnxpss |
|- ran ( A X. B ) C_ B |
4 |
2 3
|
sstri |
|- ran ( C i^i ( A X. B ) ) C_ B |
5 |
|
eqss |
|- ( ran ( C i^i ( A X. B ) ) = B <-> ( ran ( C i^i ( A X. B ) ) C_ B /\ B C_ ran ( C i^i ( A X. B ) ) ) ) |
6 |
4 5
|
mpbiran |
|- ( ran ( C i^i ( A X. B ) ) = B <-> B C_ ran ( C i^i ( A X. B ) ) ) |
7 |
|
inxpssres |
|- ( C i^i ( A X. B ) ) C_ ( C |` A ) |
8 |
7
|
rnssi |
|- ran ( C i^i ( A X. B ) ) C_ ran ( C |` A ) |
9 |
|
sstr |
|- ( ( B C_ ran ( C i^i ( A X. B ) ) /\ ran ( C i^i ( A X. B ) ) C_ ran ( C |` A ) ) -> B C_ ran ( C |` A ) ) |
10 |
8 9
|
mpan2 |
|- ( B C_ ran ( C i^i ( A X. B ) ) -> B C_ ran ( C |` A ) ) |
11 |
|
ssel |
|- ( B C_ ran ( C |` A ) -> ( y e. B -> y e. ran ( C |` A ) ) ) |
12 |
|
vex |
|- y e. _V |
13 |
12
|
elrn2 |
|- ( y e. ran ( C |` A ) <-> E. x <. x , y >. e. ( C |` A ) ) |
14 |
11 13
|
syl6ib |
|- ( B C_ ran ( C |` A ) -> ( y e. B -> E. x <. x , y >. e. ( C |` A ) ) ) |
15 |
14
|
ancld |
|- ( B C_ ran ( C |` A ) -> ( y e. B -> ( y e. B /\ E. x <. x , y >. e. ( C |` A ) ) ) ) |
16 |
12
|
elrn2 |
|- ( y e. ran ( C i^i ( A X. B ) ) <-> E. x <. x , y >. e. ( C i^i ( A X. B ) ) ) |
17 |
|
opelinxp |
|- ( <. x , y >. e. ( C i^i ( A X. B ) ) <-> ( ( x e. A /\ y e. B ) /\ <. x , y >. e. C ) ) |
18 |
12
|
opelresi |
|- ( <. x , y >. e. ( C |` A ) <-> ( x e. A /\ <. x , y >. e. C ) ) |
19 |
18
|
bianassc |
|- ( ( y e. B /\ <. x , y >. e. ( C |` A ) ) <-> ( ( x e. A /\ y e. B ) /\ <. x , y >. e. C ) ) |
20 |
17 19
|
bitr4i |
|- ( <. x , y >. e. ( C i^i ( A X. B ) ) <-> ( y e. B /\ <. x , y >. e. ( C |` A ) ) ) |
21 |
20
|
exbii |
|- ( E. x <. x , y >. e. ( C i^i ( A X. B ) ) <-> E. x ( y e. B /\ <. x , y >. e. ( C |` A ) ) ) |
22 |
|
19.42v |
|- ( E. x ( y e. B /\ <. x , y >. e. ( C |` A ) ) <-> ( y e. B /\ E. x <. x , y >. e. ( C |` A ) ) ) |
23 |
16 21 22
|
3bitri |
|- ( y e. ran ( C i^i ( A X. B ) ) <-> ( y e. B /\ E. x <. x , y >. e. ( C |` A ) ) ) |
24 |
15 23
|
syl6ibr |
|- ( B C_ ran ( C |` A ) -> ( y e. B -> y e. ran ( C i^i ( A X. B ) ) ) ) |
25 |
24
|
ssrdv |
|- ( B C_ ran ( C |` A ) -> B C_ ran ( C i^i ( A X. B ) ) ) |
26 |
10 25
|
impbii |
|- ( B C_ ran ( C i^i ( A X. B ) ) <-> B C_ ran ( C |` A ) ) |
27 |
6 26
|
bitr2i |
|- ( B C_ ran ( C |` A ) <-> ran ( C i^i ( A X. B ) ) = B ) |