Metamath Proof Explorer


Theorem sssn

Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion sssn
|- ( A C_ { B } <-> ( A = (/) \/ A = { B } ) )

Proof

Step Hyp Ref Expression
1 neq0
 |-  ( -. A = (/) <-> E. x x e. A )
2 ssel
 |-  ( A C_ { B } -> ( x e. A -> x e. { B } ) )
3 elsni
 |-  ( x e. { B } -> x = B )
4 2 3 syl6
 |-  ( A C_ { B } -> ( x e. A -> x = B ) )
5 eleq1
 |-  ( x = B -> ( x e. A <-> B e. A ) )
6 4 5 syl6
 |-  ( A C_ { B } -> ( x e. A -> ( x e. A <-> B e. A ) ) )
7 6 ibd
 |-  ( A C_ { B } -> ( x e. A -> B e. A ) )
8 7 exlimdv
 |-  ( A C_ { B } -> ( E. x x e. A -> B e. A ) )
9 1 8 syl5bi
 |-  ( A C_ { B } -> ( -. A = (/) -> B e. A ) )
10 snssi
 |-  ( B e. A -> { B } C_ A )
11 9 10 syl6
 |-  ( A C_ { B } -> ( -. A = (/) -> { B } C_ A ) )
12 11 anc2li
 |-  ( A C_ { B } -> ( -. A = (/) -> ( A C_ { B } /\ { B } C_ A ) ) )
13 eqss
 |-  ( A = { B } <-> ( A C_ { B } /\ { B } C_ A ) )
14 12 13 syl6ibr
 |-  ( A C_ { B } -> ( -. A = (/) -> A = { B } ) )
15 14 orrd
 |-  ( A C_ { B } -> ( A = (/) \/ A = { B } ) )
16 0ss
 |-  (/) C_ { B }
17 sseq1
 |-  ( A = (/) -> ( A C_ { B } <-> (/) C_ { B } ) )
18 16 17 mpbiri
 |-  ( A = (/) -> A C_ { B } )
19 eqimss
 |-  ( A = { B } -> A C_ { B } )
20 18 19 jaoi
 |-  ( ( A = (/) \/ A = { B } ) -> A C_ { B } )
21 15 20 impbii
 |-  ( A C_ { B } <-> ( A = (/) \/ A = { B } ) )