Metamath Proof Explorer


Theorem sst1

Description: A topology finer than a T_1 topology is T_1. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis t1sep.1
|- X = U. J
Assertion sst1
|- ( ( J e. Fre /\ K e. ( TopOn ` X ) /\ J C_ K ) -> K e. Fre )

Proof

Step Hyp Ref Expression
1 t1sep.1
 |-  X = U. J
2 t1top
 |-  ( J e. Fre -> J e. Top )
3 cnt1
 |-  ( ( J e. Fre /\ ( _I |` X ) : X -1-1-> X /\ ( _I |` X ) e. ( K Cn J ) ) -> K e. Fre )
4 1 2 3 sshauslem
 |-  ( ( J e. Fre /\ K e. ( TopOn ` X ) /\ J C_ K ) -> K e. Fre )