Metamath Proof Explorer


Theorem sstr2

Description: Transitivity of subclass relationship. Exercise 5 of TakeutiZaring p. 17. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 14-Jun-2011)

Ref Expression
Assertion sstr2
|- ( A C_ B -> ( B C_ C -> A C_ C ) )

Proof

Step Hyp Ref Expression
1 ssel
 |-  ( A C_ B -> ( x e. A -> x e. B ) )
2 1 imim1d
 |-  ( A C_ B -> ( ( x e. B -> x e. C ) -> ( x e. A -> x e. C ) ) )
3 2 alimdv
 |-  ( A C_ B -> ( A. x ( x e. B -> x e. C ) -> A. x ( x e. A -> x e. C ) ) )
4 dfss2
 |-  ( B C_ C <-> A. x ( x e. B -> x e. C ) )
5 dfss2
 |-  ( A C_ C <-> A. x ( x e. A -> x e. C ) )
6 3 4 5 3imtr4g
 |-  ( A C_ B -> ( B C_ C -> A C_ C ) )