Metamath Proof Explorer


Theorem sstr2OLD

Description: Obsolete version of sstr2 as of 19-May-2025. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sstr2OLD
|- ( A C_ B -> ( B C_ C -> A C_ C ) )

Proof

Step Hyp Ref Expression
1 ssel
 |-  ( A C_ B -> ( x e. A -> x e. B ) )
2 1 imim1d
 |-  ( A C_ B -> ( ( x e. B -> x e. C ) -> ( x e. A -> x e. C ) ) )
3 2 alimdv
 |-  ( A C_ B -> ( A. x ( x e. B -> x e. C ) -> A. x ( x e. A -> x e. C ) ) )
4 df-ss
 |-  ( B C_ C <-> A. x ( x e. B -> x e. C ) )
5 df-ss
 |-  ( A C_ C <-> A. x ( x e. A -> x e. C ) )
6 3 4 5 3imtr4g
 |-  ( A C_ B -> ( B C_ C -> A C_ C ) )