Description: Subclass relationship for union of classes. Theorem 25 of Suppes p. 27. (Contributed by NM, 5-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssun1 | |- A C_ ( A u. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | |- ( x e. A -> ( x e. A \/ x e. B ) ) |
|
| 2 | elun | |- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
|
| 3 | 1 2 | sylibr | |- ( x e. A -> x e. ( A u. B ) ) |
| 4 | 3 | ssriv | |- A C_ ( A u. B ) |