Metamath Proof Explorer


Theorem ssuniint

Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssuniint.x
|- F/ x ph
ssuniint.a
|- ( ph -> A e. V )
ssuniint.b
|- ( ( ph /\ x e. B ) -> A e. x )
Assertion ssuniint
|- ( ph -> A C_ U. |^| B )

Proof

Step Hyp Ref Expression
1 ssuniint.x
 |-  F/ x ph
2 ssuniint.a
 |-  ( ph -> A e. V )
3 ssuniint.b
 |-  ( ( ph /\ x e. B ) -> A e. x )
4 1 2 3 elintd
 |-  ( ph -> A e. |^| B )
5 elssuni
 |-  ( A e. |^| B -> A C_ U. |^| B )
6 4 5 syl
 |-  ( ph -> A C_ U. |^| B )