Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssuniint.x | |- F/ x ph |
|
ssuniint.a | |- ( ph -> A e. V ) |
||
ssuniint.b | |- ( ( ph /\ x e. B ) -> A e. x ) |
||
Assertion | ssuniint | |- ( ph -> A C_ U. |^| B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssuniint.x | |- F/ x ph |
|
2 | ssuniint.a | |- ( ph -> A e. V ) |
|
3 | ssuniint.b | |- ( ( ph /\ x e. B ) -> A e. x ) |
|
4 | 1 2 3 | elintd | |- ( ph -> A e. |^| B ) |
5 | elssuni | |- ( A e. |^| B -> A C_ U. |^| B ) |
|
6 | 4 5 | syl | |- ( ph -> A C_ U. |^| B ) |