Description: A subset of a well-founded set is well-founded. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sswf | |- ( ( A e. U. ( R1 " On ) /\ B C_ A ) -> B e. U. ( R1 " On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankidb | |- ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
|
| 2 | r1sscl | |- ( ( A e. ( R1 ` suc ( rank ` A ) ) /\ B C_ A ) -> B e. ( R1 ` suc ( rank ` A ) ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. U. ( R1 " On ) /\ B C_ A ) -> B e. ( R1 ` suc ( rank ` A ) ) ) |
| 4 | r1elwf | |- ( B e. ( R1 ` suc ( rank ` A ) ) -> B e. U. ( R1 " On ) ) |
|
| 5 | 3 4 | syl | |- ( ( A e. U. ( R1 " On ) /\ B C_ A ) -> B e. U. ( R1 " On ) ) |