Metamath Proof Explorer


Theorem sswf

Description: A subset of a well-founded set is well-founded. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion sswf
|- ( ( A e. U. ( R1 " On ) /\ B C_ A ) -> B e. U. ( R1 " On ) )

Proof

Step Hyp Ref Expression
1 rankidb
 |-  ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) )
2 r1sscl
 |-  ( ( A e. ( R1 ` suc ( rank ` A ) ) /\ B C_ A ) -> B e. ( R1 ` suc ( rank ` A ) ) )
3 1 2 sylan
 |-  ( ( A e. U. ( R1 " On ) /\ B C_ A ) -> B e. ( R1 ` suc ( rank ` A ) ) )
4 r1elwf
 |-  ( B e. ( R1 ` suc ( rank ` A ) ) -> B e. U. ( R1 " On ) )
5 3 4 syl
 |-  ( ( A e. U. ( R1 " On ) /\ B C_ A ) -> B e. U. ( R1 " On ) )