Description: A subset of a well-founded set is well-founded. (Contributed by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | sswf | |- ( ( A e. U. ( R1 " On ) /\ B C_ A ) -> B e. U. ( R1 " On ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankidb | |- ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
|
2 | r1sscl | |- ( ( A e. ( R1 ` suc ( rank ` A ) ) /\ B C_ A ) -> B e. ( R1 ` suc ( rank ` A ) ) ) |
|
3 | 1 2 | sylan | |- ( ( A e. U. ( R1 " On ) /\ B C_ A ) -> B e. ( R1 ` suc ( rank ` A ) ) ) |
4 | r1elwf | |- ( B e. ( R1 ` suc ( rank ` A ) ) -> B e. U. ( R1 " On ) ) |
|
5 | 3 4 | syl | |- ( ( A e. U. ( R1 " On ) /\ B C_ A ) -> B e. U. ( R1 " On ) ) |